Как известно, не менее половины сбалансированных аутосомных перестроек в популяции представлено реципрокными транслокациями [267].
Частота гетерозигот по реципрокным транслокациям оценивается как 1 на 600 супружеских пар [305]. Реальный риск рождения жизнеспособных детей с несбалансированным кариотипом определяется характером реципрокной транслокации (спецификой хромосом, вовлеченных в перестройку, размерами транслоцированных сегментов) и может достигать 40 % [578].
Процессы конъюгации, рекомбинации и сегрегации транслоцированных хромосом в мейозе подробно рассмотрены в соответствующей литературе [56, 177, 187]. Кратко характеризуя особенности поведения аберрантных хромосом отметим, что при гетерозиготном носительстве реципрокных транслокаций в профазе мейоза они образуют не бивалент, а комплекс из четырех хромосом (квадривалент). В зависимости от характера их сегрегации в анафазе возможно образование нескольких типов гамет, только одна из которых будет иметь нормальный и одна — сбалансированный набор хромосом, в то время как остальные гаметы будут иметь частичные трисомии или моносомии, т. е. будут несбалансированными (рис. 6.2). Пренебрегая редкими случаями сегрегации хромосом по типу смежного-2 и 3 : 1, а также еще более усложняющими ситуацию обменами между различными участками нормальных и транслоцирован- ных хромосом, следует ожидать, что 25 % гамет окажутся нормальными, 25 % — сбалансированными и 50 % — несбалансированными.
Эти теоретически ожидаемые пропорции подтверждаются экспериментальными данными, полученными при непосредственном исследовании хромосомного набора в зрелых гаметах. Так, суммарная частота нормальных и сбалансированных сперматозоидов у мужчин-носителей различных реципрокных транслокаций составляет в среднем около 46 %, несбалансированных — 54 % [451]. Однако преобладание какого-либо определенного типа сегрегации хромосом в сперматогенезе у гетерозигот по различным транслокациям с учетом особенностей хиазмообразования вряд ли можно считать установленным [240]. Детальные исследования поведения реципрокных транслокаций в оогенезе отсутствуют, однако согласно данным литературы, частота несбалансированных кариотипов
Рис. 6.2. Схема транслокационного квадривалента и варианты сегрегации хромосом в анафазе I мейотического деления. При альтернативном расхождении (а) образуются нормальная и сбалансированная гаметы. Совместное (смежное) расхождение (б, в), при котором образуются 4 несбалансированные (с частичными трисомиями и моносомиями) гаметы. При смежном-1 типе сегрегации (б) в гамету попадают хромосомы с негомологичными центромерами — одна нормальная и одна аберрантная. При смежном-2 типе (в) в гамету попадают хромосомы с идентичными центромерами — нормальная и аберрантная. При сегрегации 3:1 (г) в одну из гамет попадают 3 хромосомы, в другую — только одна, при этом распределение хромосом из квадривалента может происходить равновероятным образом [187]
у плодов при развивающейся беременности и у новорожденных примерно одинакова как при материнском, так и при отцовском но- сительстве реципрокных транслокаций [267, 347, 578].
Следует отметить, что многочисленные данные по пренатальному и постнатальному кариотипированию потомков носителей реципрокных транслокаций свидетельствуют о несоответствии между частотой несбалансированных гамет и частотой несбалансированных зигот, причем число потомков с несбалансированным кариотипом оказывается намного меньше ожидаемого. К такому снижению может приводить несколько причин. Так, определенный вклад могут вносить дополнительные аномалии поведения хромосом в мейозе, проявляющиеся по-разному в зависимости от размера транслоцированного участка и хромосом, затронутых перестройкой. Нельзя исключить влияние избирательной селекции, направленной против гамет с несбалансированным хромосомным набором, а также предпочтительного участия в оплодотворении нормальных и/или сбалансированных гамет. Наконец, эта селекция, осуществляющаяся на уровне зигот, приводит к их гибели на разных стадиях эмбрионального развития, включая доимплантационный период. При обследовании супружеских пар с бесплодием или привычным невынашиванием установлено, что хромосомные перестройки у отца встречаются почти вдвое чаще, чем у матери [267, 347, 578], что еще раз подтверждает влияние хромосомных аберраций на процесс сперматогенеза, которое приводит как к снижению спермопродукции, так и, возможно, к образованию функционально неполноценных гамет с хромосомным дисбалансом.
В наших исследованиях было выявлено лишь 9 случаев несбалансированных кариотипов, обусловленных родительскими аберрациями (рис. 6.3). Остальные плоды имели нормальный или сбалансированный кариотипы (табл. 6.1). При этом не было отмечено хромосомных аберраций других хромосом, не вовлеченных в перестройку. Между тем, пренатально зарегистрированы единичные случаи трисомий 21 и 13 у роди- телей-носителей реципрокных транслокаций между аутосомами [347]. Отсутствие данных о родительском происхождении добавочных хромосом в этих исследованиях не позволяет полностью исключить комплементацию гамет, или, иными словами, случайного совпадения. Поэтому вопрос о существовании межхромосомного влияния реципрокных транслокаций на сегрегацию других хромосом в мейозе у человека, эк-
Рис. 6.3. Случай несбалансированного кариотипа у плода при сегрегации хромосом 3:1 в мейозеу матери-носительницы реципрокной транслокации: а — кариотип плода 47,XX, +der(13); б — кариотип матери 46,ХХ,1(3;13)^21ц12). Метафазные пластинки из ФГА-стимулированных лимфоцитов. Окраска Q^.^/'Ас.О
Таблица 6.1. Результаты, пренатальной диагностики в группе носителей структурных аберраций хромосом
Тип аберрации |
Носитель |
Число случаев |
Кариотип плода |
||
нормаль ный |
сбаланси рованный |
несбаланси рованный |
|||
Реципрокные транслокации (n = 46) |
Мать |
30 |
5 |
17 |
8 |
Отец |
12 |
4 |
7 |
1 |
|
Неизвестно |
4 |
1 |
1 |
2 |
|
Робертсоновские транслокации (n = 40) |
Мать |
25 |
5 |
18 |
2 |
Отец |
9 |
2 |
6 |
1 |
|
Неизвестно |
6 |
0 |
3 |
3 |
|
Инверсии (n = 8) |
Мать |
4 |
3 |
1 |
0 |
Отец |
4 |
2 |
2 |
0 |
|
Инверсии 9ph (n = 130) |
Мать |
34 |
8 |
26 |
0 |
Отец |
29 |
9 |
18 |
2 |
|
Оба родителя |
1 |
0 |
1 |
0 |
|
Неизвестно |
66 |
5 |
58 |
3 |
|
Всего |
|
224 |
44 |
158 |
22 |
спериментально подтвержденный на мышах [11], остается открытым.
Таким образом, генетически несбалансированные гаметы, как сперматозоиды, так и ооциты, возникают чаще, чем они регистрируются при пренатальной диагностике и у потомков носителей транслокаций [266]. Наиболее вероятным кажется предположение, что эти различия обусловлены не столько селекцией несбалансированных гамет в мейозе и на постмейотических стадиях сперматогенеза или неспособностью яйцеклетки к оплодотворению, сколько летальным эффектом большинства из несбалансированных хромосомных наборов на ранних стадиях эмбриогенеза.
В заключение следует еще раз подчеркнуть, что соотношение сбалансированных и несбалансированных гамет варьирует в зависимости от хромосом, затронутых перестройкой, а также от локализации точек разрыва. Однако во всех случаях их реальное соотношение существенно отличается от теоретически ожидаемого.