Кровоток в полушариях

  Кровоток в тканях тела изменяется в зависимости от уровня метаболизма и активности в этих тканях. Кровоток, который обеспечивает доставку к тканям необходимых питательных веществ и удаление конечных продуктов обмена, оказывается весьма чувствительным и реагирует на самые незначительные изменения в активности клеток. И действительно, изменение активности в различных областях мозга отражается, очевидно, в относительном количестве крови, протекающей через эти области. Это открытие дало возможность выявлять и исследовать взаимодействие различных областей мозга человека в процессе поведения, измеряя изменения кровотока в той или иной области.
Современные методики измерения кровотока у бодрствующего и выполняющего какие-либо действия человека были разработаны Нильсоном Лассеном, Дэвидом Ингваром и другими [9]. Они вводили в кровь, направляющуюся к мозгу, радиоактивный изотоп (ксенон-133) и наблюдали за током крови с помощью специальных детекторов, располагаемых вблизи от поверхности головы. Низкий уровень гамма-излучения, испускаемого этим изотопом, считается безвредным; изотоп вымывается током крови за 15 мин. Методика, первоначально использовавшаяся для больных, нуждающихся в обследовании по ме
дицинским показаниям, была с тех пор усовершенствована так, что испытуемый вдыхает специальную смесь воздуха с ксено1 ном, а интенсивность кровотока регистрируют с помощью специального детектора.
Результаты множества работ, в которых измеряли кровоток в мозгу во время различного рода физической и умственной деятельности, были весьма впечатляющими. «Возродились» классические предсказания относительно областей мозга, связанных с психическими функциями. В областях каждого полушария, участвующих в зрении, например, наблюдается усиление кровотока, если испытуемый смотрит на объект. Речевые стимулы увеличивают кровоток в слуховых областях каждой стороны мозга.
Хотя наиболее сильные изменения в характере кровотока наблюдаются в пределах целого мозга в передне-заднем направлении, были также обнаружены различия. и между полушариями. Используя методики, которые позволяют исследовать регионарный кровоток в двух полушариях одновременно, Ял Рисберг сравнивал характер кровотока у праворуких мужчин, добровольно согласившихся на обследование, во время выполнения двух задач — теста на вербальные аналогии и теста на перцептивное заполнение пробелов. В такой задаче испытуемые должны были рассмотреть картинки, содержащие отдельные фрагменты, и понять, что на них нарисовано [10].
В этих двух ситуациях были обнаружены небольшие (около 3%), но достоверные межполушарные различия в кровотоке. Как и ожидалось, средняя величина кровотока в левом полушарии была больше при выполнении задачи на вербальные аналогии, а средняя величина кровотока в правом полушарии была больше при выполнении задачи на мысленное завершение рисунков. Рисбергу удалось оценить, какая из областей каждого полушария вносит наиболее значительный вклад в межполушарные различия кровотока. Для вербальных тестов самые большие различия были обнаружены в лобной, лобновисочной и теменной областях. В состоянии покоя различия между соответствующими областями полушарий были незначительными.
Исследователи кровотока Лассен и Ингвар сообщают, что, несмотря на наблюдавшиеся ими межполушарные различия, наибольшее впечатление на них произвело поразительное сходство в характере кровотока на двух сторонах мозга даже при таком высоколатерализованном виде деятельности, как речь [11]. Межполушарные различия в активности являются, по-видимому, намного более тонкими, чем изменения, которые происходят в обоих полушариях. Это наводит на мысль о том, что межполушарные различия отражают только одну из нескольких различных схем организации мозга. Исследование мозгового
кровотока показывает, что сложные задачи обычно вызывают повышение активности во многих областях обоих полушарий.
Метаболизм мозга: возможности его количественной оценки
Методики измерения мозгового кровотока имеют на самом деле ряд недостатков, ограничивающих использование получаемых с их помощью данных в качестве критериев активности мозга. Существующие на сегодняшний день системы измерения кровотока не дают точной информации о глубоких областях мозга. Большинство наблюдаемых характеристик относится к коре. Необходимы такие методики, которые позволяли бы анализировать также активность в более глубоко расположенных структурах. Кроме того, возможно, что кровоток не реагирует в достаточной мере на быстрые изменения активности мозга. По этим причинам разрабатываются более тонкие методы, позволяющие прямо измерять интенсивность метаболизма.
Метаболизм мозга на микроуровне можно наблюдать путем измерения скорости утилизации меченой радиоактивной глюкозы или других питательных веществ в разных областях мозга. Слабое излучение, испускаемое этими веществами, измеряют на поверхности головы под разными углами и анализируют с помощью компьютера, для того чтобы получить картину распределения источников излучения в мозгу.
Было показано, что интенсивность метаболизма в небольших областях мозга изменяется соответствующим образом при определенных видах поведенческой активности [12]. Многие исследователи возлагают большие надежды на использование таких методик для установления точных отношений между активностью мозга и поведением, а также для выявления сходства и различий между двумя полушариями. Возможности представляются безграничными, особенно в свете того, что подобные методики позволяют оценивать метаболические процессы в мозгу во время активного поведения.
Вопросы, возникающие при разработке методик измерения активности мозга
Электрофизиологические измерения, исследования регионарного кровотока и другие измерения интенсивности метаболических процессов дают исследователям возможность изучать взаимоотношения между активностью мозга и поведением. Они сыграли важную роль в физиологической оценке правильности некоторых представлений о функциях мозга, основанных на психологических исследованиях больных с повреждениями мозга и нормальных людей.
В то же время измерения активности мозга в поведении подняли некоторые вопросы относительно в высшей степени преувеличенных представлений о межполушарной асимметрии. Мало что поддерживает идею о включении либо одного, либо другого полушария для выполнения определенной работы целиком им одним. Каждый из показателей, рассматривавшихся нами, указывает на вовлечение многих областей мозга в выполнение даже самых простых заданий. Асимметрии в активности полушарий, конечно, существуют, но они могут быть очень тонкими; этот факт должен предостеречь нас от чрезвычайно упрощенных представлений о специализации полушарий.
Структурные (анатомические) асимметрии двух полушарий
Норман Гешвинд и Вальтер Левицкий в работе, относящейся к 1968 г., показали наличие явных анатомических асимметрий двух полушарий человеческого мозга в областях, важных для речи и языка [13]. Их статья, опубликованная в журнале, популярном среди ученых различных специальностей, вызвала большое волнение у тех, кто интересуется проблемами межполушарной функциональной асимметрии.
Гешвинд и Левицкий не были, однако, первыми исследователями, которые обратили внимание на такие асимметрии в мозгу. Об асимметриях время от времени сообщалось, начиная еще со второй половины XIX в. В то время различия считали незначительными и недостаточными по величине для того, чтобы они могли отвечать за функциональные различия между левым и правым мозгом.
В конце 60-х годов XX в., однако, пришло время пересмотреть возможность существования функциональных асимметрий между полушариями на анатомическом уровне. После публикации статьи Гешвинда и Левицкого проблему исследовал ряд других ученых, которые расширили поиск асимметрий исследованиями на новорожденных и приматах.
Здесь мы рассмотрим данные, указывающие на асимметрии мозга взрослого человека. Обсуждение работ на новорожденных и приматах мы отложим до 7-й и 8-й глав соответственно.
Результаты измерений
Асимметрия, обнаруженная Гешвиндом и Левицким, касалась длины височной плоскости, занимающей верхнюю поверхность височной доли позади слуховой коры. В 65 из 100 измеренных посмертно экземпляров мозга более длинной оказалась височная плоскость в левом полушарии, в 11 — в правом, а в остальных 24 различий не наблюдалось. В среднем левая ви-

Левое полушарие
Правое полушарие
борозда
борозда
Левое полушарие
1СЪ-

Зона Вернике
Рис. 4.4. Анатомические асимметрии в коре мозга человека. А. Сильвиева борозда, обозначающая верхнюю границу височной доли, поднимается более круто на правой стороне мозга. Б. Височная плоскость, занимающая верхнюю поверхность височной доли, обычно намного больше слева. Эта область в левом полушарии считается частью зоны Вернике — области, связанной с восприятием речи (Geschwind N. Specializations of the Human Brain. Scientific American, 1979).
сочная плоскость была на одну треть длиннее правой. Рис. 4.4 показывает расположение этой асимметрии.
Хотя производит впечатление величина этих асимметрий, наиболее существенной является их локализация. Височная плоскость составляет часть зоны Вернике — области, названной по имени Карла Вернике, который первым обратил внимание на то, что повреждение этой области часто приводит к различным афазическим симптомам. Гешвинд и Левицкий предположили, что наблюдавшиеся асимметрии сопоставимы с функциональными асимметриями, которые, как полагают, контролируются этой областью.
Несколько работ, в которых для измерения височной плоскости использовались различные методики, подтвердили наблюдения Гешвинда и Левицкого [14]. Были описаны результаты прямых измерений 337 экземпляров мозга (включая 100 экземпляров, исследованных Гешвиндом и Левицким). В 70% была выявлена асимметрия, связанная с большей длиной или площадью височной плоскости в левом полушарии.
Измерения на живом мозге
Анатомические исследования, рассматривавшиеся до сих пор, включали измерения, проведенные при посмертном изучении мозга. Другие данные указывают на то, что асимметрии можно найти также в живом мозгу.
Одна из методик использует то обстоятельство, что пути крупных кровеносных сосудов мозга отражают анатомическое строение окружающих тканей. В частности, средняя мозговая артерия проходит через необходимую для языковой функции область височной доли. В течение многих лет невропатологи пользовались церебральной ангиографией для визуализации этого крупного кровеносного сосуда с тем, чтобы определить наличие повреждений в окружающих его тканях. Рентген-конт- растное вещество, введенное во внутреннюю сонную артерию на шее (та же артерия используется в тесте Вада), попадает с током крови в среднюю мозговую артерию и делает ее видимой на рентгенограмме. Марджори Ле Мэй и ее коллеги получили данные, указывающие на то, что лево-правосторонние асимметрии, соответствующие асимметриям, обнаруженным при посмертных измерениях мозга, можно наблюдать с помощью ан- гиографической методики [15].
Вторая методика, используемая для измерения асимметрии в живом мозгу, — это компьютерная томография. В установке, предназначенной для томографии, источник рентгеновских лучей вращается в одной плоскости вокруг головы, тогда как детекторы постоянно регистрируют интенсивность проходящего сквозь голову излучения. Компьютер накапливает информацию и затем использует ее для реконструкции изображения среза мозга. Путем простого регулирования величины угла, под которым идут рентгеновские лучи, можно получить изображение сечения мозга любой плоскостью. Рис. 4.5 иллюстрирует методику томографического исследования. Эта методика в течение нескольких лет использовалась для выявления локализации повреждений мозга. Ле Мэй и ее коллеги активно изучали возможность использования данных компьютерной томографии для исследования асимметрий и добились определенного успеха [16].
О чем говорят нам анатомические асимметрии?
Значительный интерес к измерению асимметрий головного мозга методами ангиографии и компьютерной томографии обусловлен основной проблемой в интерпретации анатомических асимметрий. Имеют ли установленные анатомические асимметрии существенное отношение к функциональным асимметриям?
Действительно ли они являются морфологической основой функциональных асимметрий между полушариями?
В данный момент мы этого не знаем. Большая часть данных по анатомическим асимметриям получена при посмертных измерениях мозга, и мы ничего не знаем о видах функциональных асимметрий, которые, возможно, существовали прижизненно. Во многих случаях неизвестно даже, право- или леворукими были данные индивидуумы. Очевидно, что информация такого рода необходима, если мы намерены ответить на вопросы, поставленные в предыдущем абзаце.
Методики, которые позволяют проводить измерения на живом мозгу, дают нам возможность получить эту решающую информацию. Наборы поведенческих и электрофизиологических тестов, предназначенных для исследования распределения функций между полушариями, можно использовать вместе с измере
ниями асимметрии мозга у тех же индивидуумов, для того что- •бы узнать, есть ли между ними связь. Некоторые предварительные данные указывают на то, что в целом мозг леворуких обладает меньшей анатомической асимметрией, чем мозг праворуких [17]. Это многообещающее наблюдение. Ясно, однако, что исследователи только лишь начали процесс изучения взаимоотношений между анатомическими и функциональными асимметриями.
Большой интерес представляет также вопрос о том, существуют ли между соответствующими областями двух полушарий различия на клеточном уровне. Микроскопические исследования были важным дополнением к классическим исследованиям по идентификации различных областей мозга. Они могут сыграть такую же роль и при изучении межполушарной асимметрии. Мы упоминали мимоходом о возможности существования биохимических различий между соответствующими областями левого и правого мозга. Подобное различие уже было описано в предварительном исследовании распределения нор- лдреналина — нейромедиатора, обнаруженного в таламусе человека [18].
Таламус—подкорковая структура, которая, как известно, играет роль в сенсорных и речевых функциях. При исследовании областей таламуса отмечено более высокое содержание норадреналина слева; в передних областях таламуса соотношение обратное — содержание норадреналина выше справа. Эту работу следует повторить и расширить; многое еще нужно узнать о роли норадреналина в определенных таламических •функциях. Однако данная работа представляет собой одно из первых исследований по выявлению возможной нейрохимической асимметрии в нервной системе. 

Источник: Спрингер С., Дейч Г., «Левый мозг, правый, мозг. Асимметрия мозга» 1983

А так же в разделе «  Кровоток в полушариях »