Основные детерминанты вязкости крови.
Вязкость крови подвержена влиянию многих факторов (табл. 23.1). Все они реализуют свое действие, меняя вязкость плазмы или реологические свойства форменных элементов крови.
Содержание эритроцитов. Эритроцит — основная клеточная популяция крови, активно участвующая в процессах физиологической агрегации. По этой причине изменения гематокрита (Ht) существенно отражаются на вязкости крови (рис. 23.3). Так, при возрастании Ht с 30 до 60 % относительная вязкость крови увеличивается вдвое, а при возрастании Ht с 30 до 70 % — втрое. Гемодилюция, напротив, снижает вязкость крови.
Термин «реологическое поведение крови» (rheological behavior) является общепринятым, подчеркивает «неньютоновский» характер текучести крови.
Рис. 23.3. Взаимосвязь между DO2 и гематокритом.
Таблица 23.1. Факторы, влияющие на вязкость крови
Деформационная способность эритроцитов. Диаметр эритроцита приблизительно в 2 раза превышает просвет капилляра. В силу этого пассаж эритроцита через микроциркуляторное русло возможен только при изменении его объемной конфигурации. Расчеты показывают, что если бы эритроцит не был способен к деформации, то кровь с Ht 65 % превратилась бы в плотное гомогенное образование и в периферических отделах кровеносной системы наступила бы полная остановка кровотока. Однако благодаря способности эритроцитов менять свою форму и приспосабливаться к условиям внешней среды циркуляция крови не прекращается даже при Ht 95—100 %.
Стройной теории деформационного механизма эритроцитов нет. Видимо, этот механизм основан на общих принципах перехода золя в гель. Предполагают, что деформация эритроцитов — энергетически зависимый процесс. Возможно, гемоглобин А принимает в нем активное участие. Известно, что содержание гемоглобина А в эритроците снижается при некоторых наследственных болезнях крови (серповидно-клеточной анемии), после операций в условиях искусственного кровообращения. При этом меняются форма эритроцитов и их пластичность. Наблюдают повышенную вязкость крови, которая не соответствует низкому Ht.
Вязкость плазмы. Плазма в целом может быть отнесена к разряду «ньютоновских» жидкостей. Ее вязкость относительно стабильна в различных отделах кровеносной системы и в основном определяется концентрацией глобулинов. Среди последних основное значение имеет фибриноген. Известно, что удаление фибриногена снижает вязкость плазмы на 20 %, поэтому вязкость образующейся сыворотки приближается к вязкости воды.
В норме вязкость плазмы составляет около 2 отн. ед. Это приблизительно 1/15 часть того внутреннего сопротивления, которое развивается цельной кровью в венозном отделе микроциркуляции. Тем не менее плазма оказывает весьма существенное влияние на периферический кровоток. В капиллярах вязкость крови снижается вдвое по сравнению с проксимальными и дистальными сосудами большего диаметра (феномен §). Такой «пролапс» вязкости связан с осевой ориентацией эритроцитов в узком капилляре. Плазма при этом оттесняется на периферию, к стенке сосуда. Она служит «смазкой», которая обеспечивает скольжение цепочки форменных элементов крови с минимальным трением.
Этот механизм функционирует только при нормальном белковом составе плазмы. Повышение уровня фибриногена или любого другого глобулина приводит к затруднению капиллярного кровотока, порой критического характера. Так, миеломная болезнь, макроглобулинемия Вальденстрема и некоторые коллагенозы сопровождаются избыточной продукцией иммуноглобулинов. Вязкость плазмы при этом повышается относительно нормального уровня в 2—3 раза. В клинической картине начинают преобладать симптомы тяжелых расстройств микроциркуляции: снижение зрения и слуха, сонливость, адинамия, головная боль, парестезии, кровоточивость слизистых оболочек.
Патогенез гемореологических расстройств. В практике интенсивной терапии гемореологические расстройства возникают под влиянием комплекса факторов. Действие последних в критической ситуации носит универсальный характер.
Биохимический фактор. В первые сутки после операции или травмы уровень фибриногена увеличивается, как правило, вдвое. Пик этого повышения приходится на 3—5-е сутки, а нормализация содержания фибриногена наступает лишь к концу 2-й послеоперационной недели. Кроме того, в кровотоке в избыточном количестве появляются продукты деградации фибриногена, активированные тромбоцитарные прокоагулянты, катехоламины, простагландины, продукты ПОЛ. Все они действуют как индукторы агрегации красных клеток крови. Формируется своеобразная биохимическая ситуация — «реотоксемия».
Гематологический фактор. Хирургическое вмешательство или травма сопровождаются также определенными изменениями клеточного состава крови, которые получили название гематологического стресс-синдрома. В кровоток поступают юные гранулоциты, моноциты и тромбоциты повышенной активности.
Гемодинамический фактор. Возросшая агрегационная наклонность клеток крови при стрессе накладывается на локальные гемодинамические нарушения. Показано, что при неосложненных брюшно-полостных вмешательствах объемная скорость кровотока через подколенные и подвздошные вены падает на 50 %. Это связано с тем, что иммобилизация больного и миорелаксанты блокируют во время операции физиологический механизм «мышечной помпы». Кроме того, под влиянием ИВЛ, анестетиков или кровопотери снижается системное давление. В подобной ситуации кинетической энергии систолы может оказаться недостаточно, чтобы преодолеть сцепление форменных элементов крови друг с другом и с эндотелием сосудов. Нарушается естественный механизм гидродинамической дезагрегации клеток крови, возникает микроциркуляторный стаз.
Содержание эритроцитов. Эритроцит — основная клеточная популяция крови, активно участвующая в процессах физиологической агрегации. По этой причине изменения гематокрита (Ht) существенно отражаются на вязкости крови (рис. 23.3). Так, при возрастании Ht с 30 до 60 % относительная вязкость крови увеличивается вдвое, а при возрастании Ht с 30 до 70 % — втрое. Гемодилюция, напротив, снижает вязкость крови.
Термин «реологическое поведение крови» (rheological behavior) является общепринятым, подчеркивает «неньютоновский» характер текучести крови.
Рис. 23.3. Взаимосвязь между DO2 и гематокритом.
Таблица 23.1. Факторы, влияющие на вязкость крови
Повышают вязкость крови | Понижают вязкость крови |
Замедление кровотока | Ускорение кровотока |
Ацидоз | Алкалоз |
Полицитемия | Анемия |
Гиперкапния | Гипокапния |
Гипотермия | Гипертермия |
Гиперфибриногенемия | Гипопротеинемия |
Гиперлипидемия | |
Гипоксия | |
Гипергликемия |
Деформационная способность эритроцитов. Диаметр эритроцита приблизительно в 2 раза превышает просвет капилляра. В силу этого пассаж эритроцита через микроциркуляторное русло возможен только при изменении его объемной конфигурации. Расчеты показывают, что если бы эритроцит не был способен к деформации, то кровь с Ht 65 % превратилась бы в плотное гомогенное образование и в периферических отделах кровеносной системы наступила бы полная остановка кровотока. Однако благодаря способности эритроцитов менять свою форму и приспосабливаться к условиям внешней среды циркуляция крови не прекращается даже при Ht 95—100 %.
Стройной теории деформационного механизма эритроцитов нет. Видимо, этот механизм основан на общих принципах перехода золя в гель. Предполагают, что деформация эритроцитов — энергетически зависимый процесс. Возможно, гемоглобин А принимает в нем активное участие. Известно, что содержание гемоглобина А в эритроците снижается при некоторых наследственных болезнях крови (серповидно-клеточной анемии), после операций в условиях искусственного кровообращения. При этом меняются форма эритроцитов и их пластичность. Наблюдают повышенную вязкость крови, которая не соответствует низкому Ht.
Вязкость плазмы. Плазма в целом может быть отнесена к разряду «ньютоновских» жидкостей. Ее вязкость относительно стабильна в различных отделах кровеносной системы и в основном определяется концентрацией глобулинов. Среди последних основное значение имеет фибриноген. Известно, что удаление фибриногена снижает вязкость плазмы на 20 %, поэтому вязкость образующейся сыворотки приближается к вязкости воды.
В норме вязкость плазмы составляет около 2 отн. ед. Это приблизительно 1/15 часть того внутреннего сопротивления, которое развивается цельной кровью в венозном отделе микроциркуляции. Тем не менее плазма оказывает весьма существенное влияние на периферический кровоток. В капиллярах вязкость крови снижается вдвое по сравнению с проксимальными и дистальными сосудами большего диаметра (феномен §). Такой «пролапс» вязкости связан с осевой ориентацией эритроцитов в узком капилляре. Плазма при этом оттесняется на периферию, к стенке сосуда. Она служит «смазкой», которая обеспечивает скольжение цепочки форменных элементов крови с минимальным трением.
Этот механизм функционирует только при нормальном белковом составе плазмы. Повышение уровня фибриногена или любого другого глобулина приводит к затруднению капиллярного кровотока, порой критического характера. Так, миеломная болезнь, макроглобулинемия Вальденстрема и некоторые коллагенозы сопровождаются избыточной продукцией иммуноглобулинов. Вязкость плазмы при этом повышается относительно нормального уровня в 2—3 раза. В клинической картине начинают преобладать симптомы тяжелых расстройств микроциркуляции: снижение зрения и слуха, сонливость, адинамия, головная боль, парестезии, кровоточивость слизистых оболочек.
Патогенез гемореологических расстройств. В практике интенсивной терапии гемореологические расстройства возникают под влиянием комплекса факторов. Действие последних в критической ситуации носит универсальный характер.
Биохимический фактор. В первые сутки после операции или травмы уровень фибриногена увеличивается, как правило, вдвое. Пик этого повышения приходится на 3—5-е сутки, а нормализация содержания фибриногена наступает лишь к концу 2-й послеоперационной недели. Кроме того, в кровотоке в избыточном количестве появляются продукты деградации фибриногена, активированные тромбоцитарные прокоагулянты, катехоламины, простагландины, продукты ПОЛ. Все они действуют как индукторы агрегации красных клеток крови. Формируется своеобразная биохимическая ситуация — «реотоксемия».
Гематологический фактор. Хирургическое вмешательство или травма сопровождаются также определенными изменениями клеточного состава крови, которые получили название гематологического стресс-синдрома. В кровоток поступают юные гранулоциты, моноциты и тромбоциты повышенной активности.
Гемодинамический фактор. Возросшая агрегационная наклонность клеток крови при стрессе накладывается на локальные гемодинамические нарушения. Показано, что при неосложненных брюшно-полостных вмешательствах объемная скорость кровотока через подколенные и подвздошные вены падает на 50 %. Это связано с тем, что иммобилизация больного и миорелаксанты блокируют во время операции физиологический механизм «мышечной помпы». Кроме того, под влиянием ИВЛ, анестетиков или кровопотери снижается системное давление. В подобной ситуации кинетической энергии систолы может оказаться недостаточно, чтобы преодолеть сцепление форменных элементов крови друг с другом и с эндотелием сосудов. Нарушается естественный механизм гидродинамической дезагрегации клеток крови, возникает микроциркуляторный стаз.
Источник: Под ред. В.Д. Малышева, «Интенсивная терапия. Реанимация. Первая помощь: Учебное пособие» 2000
А так же в разделе «Основные детерминанты вязкости крови. »
- Амринон.
- Кортикостероиды
- Морфин.
- Фентанил.
- Дроперидол.
- Глава 13 ОТЕК ЛЕГКИХ
- КАРДИОГЕННЫЙ ОТЕК ЛЕГКИХ
- ОТЕК ЛЕГКИХ ПРИ ИЗМЕНЕНИЯХ КОЛЛОИДНО-ОСМОТИЧЕСКОГО ДАВЛЕНИЯ
- ОТЕК ЛЕГКИХ ПРИ ПОВЫШЕННОЙ ПРОНИЦАЕМОСТИ СОСУДИСТОЙ СТЕНКИ
- Глава 14 ТРОМБОЭМБОЛИЯ ЛЕГОЧНОЙ АРТЕРИИ
- Патофизиологические изменения.
- Клиническая картина.
- Диагностика.
- Раздел IIIШОК
- Глава 15 КАРДИОГЕННЫЙ ШОК
- Рефлекторный шок.
- Истинный кардиогенный шок.
- Ареактивный шок.
- Аритмический шок.
- Глава 16 ГИПОВОЛЕМИЧЕСКИЙ ШОК
- Патофизиологические изменения.
- Первичное возмещение кровопотери
- Окончательное возмещение кровопотери.
- Новые подходы к лечению гиповолемического шока.
- Гемодинамический мониторинг по технологии «МЕДАСС».
- Гидродинамический мониторинг по технологии «МЕДАСС».
- Глава 17 СЕПТИЧЕСКИЙ ШОК
- Клиническая картина.
- Рациональная коррекция гемодинамики.
- Глава 18 АНАФИЛАКТИЧЕСКИЙ ШОК
- Раздел IV ОСТРЫЕ НАРУШЕНИЯ ПОСТОЯНСТВА ВНУТРЕННЕЙ СРЕДЫ
- Глава 19 ВОДНО-ЭЛЕКТРОЛИТНОЕ РАВНОВЕСИЕ ВОДНЫЙ БАЛАНС ОРГАНИЗМА
- ВОДНЫЕ РАЗДЕЛЫ ОРГАНИЗМА
- ОСМОЛЯРНОСТЬ И КОЛЛОИДНО-ОСМОТИЧЕСКОЕ ДАВЛЕНИЕ
- Закон электронейтральности
- Закон изоосмолярности.
- ПОЧЕЧНАЯ РЕГУЛЯЦИЯ ВОДНО-ЭЛЕКТРОЛИТНОГО РАВНОВЕСИЯ
- ОСНОВНАЯ РОЛЬ ИОНОВ
- Глава 20 ДИСБАЛАНС ЖИДКОСТИ И ЭЛЕКТРОЛИТОВ
- КЛИНИЧЕСКИЕ И ЛАБОРАТОРНЫЕ ПРИЗНАКИ НАРУШЕНИЙ БАЛАНСА ВОДЫ И ЭЛЕКТРОЛИТОВ
- ВИДЫ НАРУШЕНИЙ БАЛАНСА ВОДЫ И ЭЛЕКТРОЛИТОВ
- Дефицит внеклеточной жидкости.
- Избыток внеклеточного объема жидкости
- НАРУШЕНИЕ ОСМОЛЯРНОСТИ (ГИПО- И ГИПЕРОСМОЛЯРНЫЕ СОСТОЯНИЯ)
- Гипоосмолярные нарушения.
- Гиперосмолярные нарушения.
- НАРУШЕНИЯ КОЛЛОИДНО-ОСМОТИЧЕСКОГО ДАВЛЕНИЯ ПЛАЗМЫ
- НАРУШЕНИЯ БАЛАНСА ЭЛЕКТРОЛИТОВ
- Нарушения баланса калия.
- Нарушения баланса кальция.
- Нарушения баланса магния.
- Нарушение баланса фосфора — гипофосфатемия.
- Нарушения баланса хлора.
- ОСТРАЯ ПОЧЕЧНАЯ НЕДОСТАТОЧНОСТЬ
- Глава 21 КИСЛОТНО-ОСНОВНОЕ СОСТОЯНИЕ
- БУФЕРНЫЕ СИСТЕМЫ
- ПЕРВИЧНЫЕ ИЗМЕНЕНИЯ ПАРАМЕТРОВ КОС И КОМПЕНСАТОРНЫЕ РЕАКЦИИ
- Глава 22 НАРУШЕНИЯ КИСЛОТНО-ОСНОВНОГО СОСТОЯНИЯ
- ОСТРЫЙ ДЫХАТЕЛЬНЫЙ АЦИДОЗ
- ХРОНИЧЕСКИЙ ДЫХАТЕЛЬНЫЙ АЦИДОЗ
- ОСТРЫЙ ДЫХАТЕЛЬНЫЙ АЛКАЛОЗ
- ХРОНИЧЕСКИЙ ДЫХАТЕЛЬНЫЙ АЛКАЛОЗ
- МЕТАБОЛИЧЕСКИЙ АЦИДОЗ
- ЛАКТАТ-АЦИДОЗ
- КЕТОАЦИДОЗ
- Инсулин.
- Введение жидкости.
- Калий.
- АЛКОГОЛЬНЫЙ КЕТОАЦИДОЗ
- МЕТАБОЛИЧЕСКИЙ АЛКАЛОЗ
- Глава 23 РЕОЛОГИЧЕСКИЕ СВОЙСТВА КРОВИ И ИХ НАРУШЕНИЯ ПРИ ИНТЕНСИВНОЙ ТЕРАПИИ
- Физические основы гемореологии.
- Причина «неньютоновского поведения» крови.
- Гемореологические нарушения и венозные тромбозы.
- Методы изучения реологических свойств крови.
- Глава 24 ДИССЕМИНИРОВАННОЕ ВНУТРИСОСУДИСТОЕ СВЕРТЫВАНИЕ (ДВС-СИНДРОМ)
- Патофизиологические аспекты.
- Лечение.