Открытие толл-подобных рецепторов связано с созданием новой концепции врожденного иммунитета и формированием учения о распознавании во врожденном иммунитете. Толл-рецепторы впервые были описаны у дрозофилы как продукты генов, ответственных за формирование дорзо- вентральной ориентации тела (термин «Toll» восходит к соответствующему немецкому междометию). Впоследствии выяснили, что мутации соответствующих генов приводят к утрате устойчивости дрозофил к грибковым заболеваниям. Вскоре Р. Меджитов и соавт. обнаружили у млекопитающих гомологи генов Toll и их продукты — рецепторы. Рецепторы были названы толл-подобными (TLR — Toll-like receptor). Последующее активное изучение TLR выявило их роль в качестве рецепторов врожденного иммунитета.
TLR — эволюционно консервативные и очень древние молекулярные структуры (модули, составляющие их основу, выявляют у растений и низших многоклеточных животных). Эти рецепторы экспрессированы на поверхности и в цитоплазматических гранулах различных клеток организма. Больше всего TLR различных типов экспрессируют миелоидные клетки, прежде всего моноциты и макрофаги. В настоящее время не известны все лиганды TLR; свойства некоторых TLR изучены не до конца, однако ясно, что суммарная специфичность этих рецепторов охватывает «образы» всех основных групп одноклеточных патогенов и вирусов («образы» многоклеточных паразитов и распознающие их рецепторы пока не найдены). Число вариантов TLR у представителей разных видов невелико — у человека оно составляет 10, у мышей — 11. Различные TLR человека представлены в табл. 2.9.
TLR — трансмембранные гликопротеины I типа (т.е. с N^-концом, направленным наружу клетки). Их молекулярная масса составляет 90—115 кДа. Внеклеточная часть молекул TLR образована доменом, содержащим 19—25 повторяющихся последовательностей — богатых лейцином повторов — LRR (от Leucine-rich repeats). Эти последовательности состоят из 24—29 аминокислотных остатков и содержат мотив xxLxLxL (L — лейцин, х — любые другие остатки), а также дополнительные консервативные остатки лейцина (обычно 4—6 остатков в каждой). Этот внеклеточный домен TLR называют LRR-доменом.
Таблица 2.9. Характеристика толл-подобных рецепторов человека
Окончание табл. 2.9
Цитоплазматическая (C-концевая) часть рецептора представлена TIR-доменом (Toll/IL-1 receptor and resistance domain), ответственным за взаимодействие с адаптерными молекулами сигнальных путей. TIR-домен состоит из центрального p-слоя (образован 5 p-цепями), окруженного 5 а-спиралями. Между LRR- и TIR-доменами расположен короткий трансмембранный участок, отвечающий за выбор типа мембраны (клеточная или лизосомальная) и встраивание в нее. В результате TLR, распознающие паттерны на поверхности бактерий, грибов, простейших, а также продукты жизнедеятельности микроорганизмов (TLR-1, TLR-2, TLR-4, TLR-5, TLR-6, TLR-11), локализованы на внешней клеточной мембране. Внутри клетки (в эндосомах/лизосомах) расположены TLR, распознающие нуклеиновые кислоты (TLR-3, TLR-7, TLR-8, TLR-9), при этом их паттернраспознающая часть направлена внутрь гранулы. Важно отметить, что TLR-4 может присутствовать не только на наружной мембране, но и в эндолизосомах.
TLR специфичны к основным группам патогенов, с которыми контактируют многоклеточные организмы — грамположительным (TLR-1, TLR-2, TLR-6, TLR-11) и грамотрицательным бактериям (TLR-4, TLR-5), вирусам (TLR-3, TLR-7, TLR-8, TLR-9), простейшим и грибам (преимущественно TLR-1, TLR-2, TLR-6). TLR в покоящихся клетках — мономерные молекулы, но при взаимодействии с лигандами они формируют димеры — обычно гомодимеры (рис. 2.10); однако при распознавании грамположи- тельных бактерий и их липидсодержащих компонентов TLR-1, TLR-2 и TLR-6 формируют гетеродимеры состава TLR-2/TLR-1 и TLR-2/TLR-6. Специфичность TLR изучали в опытах с прямым связыванием низкомолекулярных веществ, по структуре аналогичных паттернам патогенов, а также
2.2. Распознавание чужого в системе врожденного иммунитета
in vivo на нокаутных животных по генам TLR (по исчезновению способности обеспечивать защиту от тех или иных патогенов). Связывающие участки TLR обладают достаточно высоким сродством к лигандам. Эти участки представляют собой подковообразные структуры, наружная часть которых образована а-спиралями, а внутренняя — связывающая лиганд — р-слоя- ми. Данные о специфичности и локализации TLR человека схематически отражены на рис. 2.11.
Чаще всего TLR распознают липидсодержащие структуры, олигонуклеотиды и углеводы; реже всего — белки (например, флагеллин в случае TLR-5). Достаточно сложно происходит образование комплекса при распознавании бактериального ЛПС рецептором TLR-4 (см. рис. 2.10). Для распознавания ЛПС прежде всего требуется его высвобождение из клеточной стенки бактерии, после чего он образует комплекс с сывороточным фактором LBP (LPS-binding complex — ЛПС-связывающий комплекс). LBP обладает сродством к мембранной молекуле CD14, что обеспечивает взаимодействие с ней комплекса ЛПС—LBP. Затем этот комплекс (уже прикрепленный к мембране через липид А, входящий в состав ЛПС) связывается с внутренней (гидрофобной) поверхностью молекулы MD2, своей наружной поверхностью взаимодействующей с внутренней поверхностью «подковы» TLR-4 (т.е. фактически TLR-4 распознает не ЛПС, а MD2). Сходная роль корецепторных молекул выявлена при распознавании паттернов TLR-2; в этом случае в качестве корецепторов выступают молекулы CD14, CD36 и интегрин avP3 (витронектин). По-видимому, для распознавания паттернов TLR необходимо участие дополнительных молекул.
Некоторые TLR распознают нуклеиновые кислоты и структуры, сходные с нуклеотидами, что важно для распознавания как вирусов, так и бактерий. Так, TLR-3 распознает двуспиральную РНК, характерную для большинства вирусов, а TLR-9 — участки ДНК, обогащенные неметилированными последовательностями CpG (Cytidine-Phosphate-Guanosine — цитидин-фос- фат гуанозин), характерными для ДНК бактерий. TLR-7 и TLR-8 обладают сродством к имидазохолиновым и гуанозиновым производным (например, при взаимодействии с ними TLR-7 мобилизуется противовирусная защита). Учитывая структурное родство этих производных с вирусной ДНК, считают, что TLR-7 и TLR-8 участвуют в распознавании односпиральной вирусной РНК. Все 4 типа TLR, распознающих нуклеиновые кислоты (TLR-3, TLR-7, TLR-8, TLR-9), локализованы внутри клетки (см. рис. 2.11). В связи с особенностями структуры трансмембранного участка этих TLR они представлены только на мембране эндоплазматического ретикулума, но не на плазмолемме. При эндоцитозе материала, содержащего PAMP, происходит мобилизация TLR из мембраны ретикулума в мембрану фаголизосомы, где они распознают паттерны и передают сигнал внутрь клетки. Локализация TLR-3, TLR-7, TLR-8, TLR-9 не на поверхности клетки, а в фаголизосоме предохраняет от распознавания собственных нуклеиновых кислот, что чревато развитием аутоиммунной патологии. Собственные ДНК или РНК попадают в фаголизосомы только при усиленном апоптозе. Кроме того, нуклеиновые кислоты, расположенные внутри вирусов и бактерий, становятся доступными для рецепторов только в фаголизосомах, где происходит разрушение патогенов. Экспрессия TLR на клетках врожденного иммунитета описана в табл. 2.10.
В результате распознавания лигандов TLR генерируется активационный сигнал. Решающую роль при этом играет внутриклеточный TIR-домен, а также связанные с ним адапторные молекулы. Процесс передачи сигнала от TLR будет рассмотрен в контексте активации клеток врожденного иммунитета (см. раздел 2.2.4).
Таблица 2.10. Экспрессия Толл-подобных рецепторов на клетках иммунной системы
М — миелоидные;
П — плазмоцитоидные;
* — сильная экспрессия на моноцитах, более слабая на макрофагах.
TLR — эволюционно консервативные и очень древние молекулярные структуры (модули, составляющие их основу, выявляют у растений и низших многоклеточных животных). Эти рецепторы экспрессированы на поверхности и в цитоплазматических гранулах различных клеток организма. Больше всего TLR различных типов экспрессируют миелоидные клетки, прежде всего моноциты и макрофаги. В настоящее время не известны все лиганды TLR; свойства некоторых TLR изучены не до конца, однако ясно, что суммарная специфичность этих рецепторов охватывает «образы» всех основных групп одноклеточных патогенов и вирусов («образы» многоклеточных паразитов и распознающие их рецепторы пока не найдены). Число вариантов TLR у представителей разных видов невелико — у человека оно составляет 10, у мышей — 11. Различные TLR человека представлены в табл. 2.9.
TLR — трансмембранные гликопротеины I типа (т.е. с N^-концом, направленным наружу клетки). Их молекулярная масса составляет 90—115 кДа. Внеклеточная часть молекул TLR образована доменом, содержащим 19—25 повторяющихся последовательностей — богатых лейцином повторов — LRR (от Leucine-rich repeats). Эти последовательности состоят из 24—29 аминокислотных остатков и содержат мотив xxLxLxL (L — лейцин, х — любые другие остатки), а также дополнительные консервативные остатки лейцина (обычно 4—6 остатков в каждой). Этот внеклеточный домен TLR называют LRR-доменом.
Таблица 2.9. Характеристика толл-подобных рецепторов человека
Рецептор |
Экзогенные лиганды (патогенассоциированные молекулярные паттерны) |
Патогены |
Эндогенные лиганды |
Мембранные |
|||
TLR-2, TLR-1 |
Триацил-липопептиды, пептидогликан, тейхоевые кислоты, липотейхоевые кислоты, зимозан, липоарабиноманнан, порин |
Грамположи- тельные бактерии, грибы, микобактерии, спирохеты, трипаносомы, нейссерии, леп- тоспиры, дрожжи, цитомегаловирус |
Белки теплового шока (Hsp70, Hsp96), липопротеины, образы опасности (DAMP) |
TLR-1, TLR-6 |
Диацил-липопептиды, пептидогликан, тейхоевые кислоты, липотейхоевые кислоты, зимозан, липоарабиноманнан |
Грамположи- тельные бактерии, микоплазма |
Образы опасности (DAMP) |
TLR-4 |
Липополисахарид, липо- тейхоевая кислота, таксол, флаволипин, F-белок респираторно-синцитиального вируса, фимбрии 1-го и P-типа |
Грамотрицатель- ные бактерии, хламидии, флаво- бактерии, респи- раторно-синцити- альный вирус |
Белки теплового шока (Hsp60, Hsp70), Р-дефензины, гиалуронан HMGB-1, фибронектин |
TLR-5 |
Флагеллин |
Сальмонеллы, жгутиковые бактерии |
Не описаны |
TLR-11 |
Профилин |
Уропатогенная кишечная палочка |
Не описаны |
Окончание табл. 2.9
Рецептор |
Экзогенные лиганды (патогенассоциированные молекулярные паттерны) |
Патогены |
Эндогенные лиганды |
Внутриклеточные |
|||
TLR-3 |
Двуспиральная РНК, поли(I:C) |
Вирусы |
Ауто-РНК |
TLR-7 |
Односпиральная РНК вирусов, аналоги нуклеозидов (имидазохинолины), локсорибин, бромиримин |
Вирусы |
Ауто-РНК, рибонуклеопроте- ины |
TLR-8 |
Односпиральная РНК вирусов, аналоги нуклеозидов |
Вирусы |
Ауто-РНК, рибонуклеопроте- ины, рибонуклео- протеинсодержащие иммунокомплексы |
TLR-9 |
ДНК микроорганизмов и синтетические олигодезок- синуклеотиды, содержащие неметилированные CpG-тандемы |
Бактерии,вирусы |
Ауто-ДНК, хроматин и хроматинсодержащие иммунокомплексы HMGB-1 |
Цитоплазматическая (C-концевая) часть рецептора представлена TIR-доменом (Toll/IL-1 receptor and resistance domain), ответственным за взаимодействие с адаптерными молекулами сигнальных путей. TIR-домен состоит из центрального p-слоя (образован 5 p-цепями), окруженного 5 а-спиралями. Между LRR- и TIR-доменами расположен короткий трансмембранный участок, отвечающий за выбор типа мембраны (клеточная или лизосомальная) и встраивание в нее. В результате TLR, распознающие паттерны на поверхности бактерий, грибов, простейших, а также продукты жизнедеятельности микроорганизмов (TLR-1, TLR-2, TLR-4, TLR-5, TLR-6, TLR-11), локализованы на внешней клеточной мембране. Внутри клетки (в эндосомах/лизосомах) расположены TLR, распознающие нуклеиновые кислоты (TLR-3, TLR-7, TLR-8, TLR-9), при этом их паттернраспознающая часть направлена внутрь гранулы. Важно отметить, что TLR-4 может присутствовать не только на наружной мембране, но и в эндолизосомах.
TLR специфичны к основным группам патогенов, с которыми контактируют многоклеточные организмы — грамположительным (TLR-1, TLR-2, TLR-6, TLR-11) и грамотрицательным бактериям (TLR-4, TLR-5), вирусам (TLR-3, TLR-7, TLR-8, TLR-9), простейшим и грибам (преимущественно TLR-1, TLR-2, TLR-6). TLR в покоящихся клетках — мономерные молекулы, но при взаимодействии с лигандами они формируют димеры — обычно гомодимеры (рис. 2.10); однако при распознавании грамположи- тельных бактерий и их липидсодержащих компонентов TLR-1, TLR-2 и TLR-6 формируют гетеродимеры состава TLR-2/TLR-1 и TLR-2/TLR-6. Специфичность TLR изучали в опытах с прямым связыванием низкомолекулярных веществ, по структуре аналогичных паттернам патогенов, а также
2.2. Распознавание чужого в системе врожденного иммунитета
in vivo на нокаутных животных по генам TLR (по исчезновению способности обеспечивать защиту от тех или иных патогенов). Связывающие участки TLR обладают достаточно высоким сродством к лигандам. Эти участки представляют собой подковообразные структуры, наружная часть которых образована а-спиралями, а внутренняя — связывающая лиганд — р-слоя- ми. Данные о специфичности и локализации TLR человека схематически отражены на рис. 2.11.
Чаще всего TLR распознают липидсодержащие структуры, олигонуклеотиды и углеводы; реже всего — белки (например, флагеллин в случае TLR-5). Достаточно сложно происходит образование комплекса при распознавании бактериального ЛПС рецептором TLR-4 (см. рис. 2.10). Для распознавания ЛПС прежде всего требуется его высвобождение из клеточной стенки бактерии, после чего он образует комплекс с сывороточным фактором LBP (LPS-binding complex — ЛПС-связывающий комплекс). LBP обладает сродством к мембранной молекуле CD14, что обеспечивает взаимодействие с ней комплекса ЛПС—LBP. Затем этот комплекс (уже прикрепленный к мембране через липид А, входящий в состав ЛПС) связывается с внутренней (гидрофобной) поверхностью молекулы MD2, своей наружной поверхностью взаимодействующей с внутренней поверхностью «подковы» TLR-4 (т.е. фактически TLR-4 распознает не ЛПС, а MD2). Сходная роль корецепторных молекул выявлена при распознавании паттернов TLR-2; в этом случае в качестве корецепторов выступают молекулы CD14, CD36 и интегрин avP3 (витронектин). По-видимому, для распознавания паттернов TLR необходимо участие дополнительных молекул.
Некоторые TLR распознают нуклеиновые кислоты и структуры, сходные с нуклеотидами, что важно для распознавания как вирусов, так и бактерий. Так, TLR-3 распознает двуспиральную РНК, характерную для большинства вирусов, а TLR-9 — участки ДНК, обогащенные неметилированными последовательностями CpG (Cytidine-Phosphate-Guanosine — цитидин-фос- фат гуанозин), характерными для ДНК бактерий. TLR-7 и TLR-8 обладают сродством к имидазохолиновым и гуанозиновым производным (например, при взаимодействии с ними TLR-7 мобилизуется противовирусная защита). Учитывая структурное родство этих производных с вирусной ДНК, считают, что TLR-7 и TLR-8 участвуют в распознавании односпиральной вирусной РНК. Все 4 типа TLR, распознающих нуклеиновые кислоты (TLR-3, TLR-7, TLR-8, TLR-9), локализованы внутри клетки (см. рис. 2.11). В связи с особенностями структуры трансмембранного участка этих TLR они представлены только на мембране эндоплазматического ретикулума, но не на плазмолемме. При эндоцитозе материала, содержащего PAMP, происходит мобилизация TLR из мембраны ретикулума в мембрану фаголизосомы, где они распознают паттерны и передают сигнал внутрь клетки. Локализация TLR-3, TLR-7, TLR-8, TLR-9 не на поверхности клетки, а в фаголизосоме предохраняет от распознавания собственных нуклеиновых кислот, что чревато развитием аутоиммунной патологии. Собственные ДНК или РНК попадают в фаголизосомы только при усиленном апоптозе. Кроме того, нуклеиновые кислоты, расположенные внутри вирусов и бактерий, становятся доступными для рецепторов только в фаголизосомах, где происходит разрушение патогенов. Экспрессия TLR на клетках врожденного иммунитета описана в табл. 2.10.
В результате распознавания лигандов TLR генерируется активационный сигнал. Решающую роль при этом играет внутриклеточный TIR-домен, а также связанные с ним адапторные молекулы. Процесс передачи сигнала от TLR будет рассмотрен в контексте активации клеток врожденного иммунитета (см. раздел 2.2.4).
Таблица 2.10. Экспрессия Толл-подобных рецепторов на клетках иммунной системы
Рецептор |
Типы клеток |
Влияние активации на экспрессию |
||||||||
Моноциты и макрофаги |
Нейтрофилы |
-0 К Я ¦8- о Я я со О 0 |
Тучные клетки |
Дендритные клетки |
Естественные киллеры |
я я н ф к « 1 CQ |
я я н ф к « |
Естественные регуляторные Т-клетки |
||
TLR-1 |
+ |
+ |
+ |
+ |
+ (М, П) |
+ |
+ |
+ |
+ |
Конститутивная экспрессия на всех клетках |
TLR-2 |
++ |
++ |
|
+ |
++(М) |
|
|
|
+ |
Усиление под влиянием патогенассоцииро- ванных молекулярных паттернов и цитокинов |
TLR-3 |
++/+* |
- |
- |
- |
++(М) |
++ |
- |
+ |
- |
Нет усиления |
TLR-4 |
++ |
++ |
+ |
+ |
++(М) |
+ |
|
|
+ |
Усиление под влиянием патогенассоцииро- ванных молекулярных паттернов и цитокинов |
TLR-5 |
++ |
+ |
- |
- |
+ (М) |
+ |
+ |
- |
+ |
Нет усиления |
TLR-6 |
++ |
+ |
- |
+ |
+(М, П) |
+ |
+ |
++ |
+ |
То же |
TLR-7 |
+ |
+ |
+ |
- |
+ (П) |
- |
- |
+ |
+ |
Усиление под влиянием цитокинов |
TLR-8 |
++ |
+ |
- |
- |
+ (М) |
+ |
+ |
- |
+ |
Усиление под влиянием IFNy |
TLR-9 |
+ |
+ |
+ |
- |
+ (П) |
+ |
- |
+ |
- |
То же |
TLR-10 |
+ |
+ |
+ |
- |
+ |
- |
- |
+ |
- |
Нет усиления |
М — миелоидные;
П — плазмоцитоидные;
* — сильная экспрессия на моноцитах, более слабая на макрофагах.