§5. Многомерный анализ сложных стимулов
Однако модель Терстоуна предполагает обязательную одномерность шкалируемого свойства объектов, в данном случае “красоты” цветных карт, т.е., независимо от того, сколько физических характеристик стимула определяет оценку “красоты” цвета, психологически все карты долж
ны быть выстроены в некоторую последовательность по степени красоты. Если же в действительности для оценки красоты цвета используется больше, чем одна субъективная размерность (как, например, при оценке различий между аппертурными цветами: одна — для цветового тона, другая — для насыщенности), то, используя модель Тер- стоуна, построить адекватную шкалу "красоты” цвета невозможно. В лучшем случае это будет какая-то проекция действительных шкал в одномерное пространство, на одну шкалу, и восстановить эти исходные шкалы по имеющейся единственной шкале, конечно, невозможно.
Естественно, что в этом случае невозможно решить и главную задачу, т.е. построить психофизическую функцию, поскольку невозможно обнаружить те физические свойства стимула, которые объясняют субъективные оценки.
Задачи построения сложных “многомерных” субъективных шкал и их последующей связи со шкалами физических свойств стимуляции породили целый ряд методов так называемого многомерного анализа (факторный анализ, многомерное шкалирование, дискриминантный и кластерный анализ).
В общем виде схему применения этих методов можно проиллюстрировать на одном из наиболее распространенных методов такого типа — на факторном анализе. Основная гипотеза факторного анализа заключается в том, что каждый объект-стимул можно описать как линейную комбинацию небольшого числа основных факторов. Число и характер этих факторов определяют априорно выделенные “существенные” параметры объектов. На основе измерений выделенных характеристик объектов строятся корреляционные или ковариационные матрицы, анализ которых приводит к локализации стимулов в пространстве основных факторов, которые интерпретируются как субъективные шкалы. Каждую субъективную шкалу соотносят с физическими параметрами стимула, выявляя связь по типу одномерной психофизической функции. В случае обнаружения однозначной связи между субъективными измерениями и физической переменной, задачу можно считать решенной. Любой новый стимул будет расположен
на субъективной шкале просто путем вычислений по результатам физических измерений.
Но перенос этого принципа на субъективное шкалирование сложных стимулов порождает новую проблему. Даже в случае, когда для сложного стимула известны физические параметры, с которыми связано изменение субъективных оценок, совсем не так просто установить однозначную связь между стимулом и реакцией. Например, восприятие аппертурных цветов традиционно определяется такими субъективными характеристиками, как цветовой той, насыщенность и яркость. Известны и определяющие их физические параметры: длина волны светового излучения, спектральный состав излучения (чистота) и его интенсивность. Казалось бы, достаточно иметь три одномерные функции типа R=f(S), чтобы описать ощущение такого сложного стимула, как цвет. Но все оказывается значительно сложнее, поскольку изменение длины волны излучения приводит к изменению не только цветового тона, но одновременно меняется и другая субъективная характеристика — насыщенность, например. Или изменение интенсивности светового излучения приводит к изменению яркости, но вместе с тем меняется и ощущение цветового тона, хотя длина волны излучения не меняется, и т.д- Таким образом, простой набор одномерных психофизических функций не гарантирует описания субъективного изменения многомерного стимула.