В начале предыдущего параграфа мы отмечали, что вычислительные алгоритмы ФА основываются на раде математических допущений о характере эмпирических данных, подвергаемых ФА. Остановимся на ряде статистических показателей, которые помогают исследователю оценить степень соответствия данных этим допущениям.
Как правило, в любой программе по ФА предусмотрен расчет показателей описательной статистики по матрице смешения. Например в статистических системах “Stadia” и SPSS для каждой переменной вычисляются общее количество наблюдений, среднее арифметическое значение и среднее квадратичное отклонение (см. табл. 3). Эти достаточно простые показатели позволяют быстро сравнить между собой все анализируемые переменные, и уже на уровне анализа исходных данных попытаться найти возможные ошибки, связанные либо с проведенными измерениями, либо с вводом данных в компьютер. Например, если при сборе данных использовалась 7-балль- ная шкала, то наверное вас насторожит среднее значение по какой-то переменной, равное 0.87, или резко отличающаяся от других величина среднего квадратичного отклонения.
Коэффициент сферичности Бартлета используется для оцеики “хорошести” корреляционной матрицы. Если этот коэффициент достаточно большой, а соответствующий ему уровень значимости мал (например, меньше 0.05 или
Кроме того, для оценки надежности вычислений элементов корреляционной матрицы и возможности ее описания с помощью ФА во многих статистических программах применяется так называемая мера адекватности вы
борки Кайзера—Мейера—Олкина(КМ О)1. По мнению Г. Кайзера (1974), значения КМО около 0.9 оцениваются как “изумительные”, 0.8 — “достойные похвалы”, 0.7 — “средние”, 0.6 — “посредственные”, 0.5 — “плохие”, а ниже
Таблица 3
Данные описательной статистики для 9 переменных
1 Имеется в виду адекватность факторной модели данному набору переменных, описываемому корреляционной матрицей.
Работая с различными данными, Г. Кайзер установил, что величина данного коэффициента адекватности повышается при: а) увеличении количества переменных,
б) возрастании числа наблюдений каждой переменной,
в) уменьшении числа общих факторов и г) увеличении абсолютных значений коэффициентов корреляций. По сути дела данный автор выделил те условия, при которых повышается адекватность данных, а следовательно, и информативность ФА.
Как правило, в любой программе по ФА предусмотрен расчет показателей описательной статистики по матрице смешения. Например в статистических системах “Stadia” и SPSS для каждой переменной вычисляются общее количество наблюдений, среднее арифметическое значение и среднее квадратичное отклонение (см. табл. 3). Эти достаточно простые показатели позволяют быстро сравнить между собой все анализируемые переменные, и уже на уровне анализа исходных данных попытаться найти возможные ошибки, связанные либо с проведенными измерениями, либо с вводом данных в компьютер. Например, если при сборе данных использовалась 7-балль- ная шкала, то наверное вас насторожит среднее значение по какой-то переменной, равное 0.87, или резко отличающаяся от других величина среднего квадратичного отклонения.
Коэффициент сферичности Бартлета используется для оцеики “хорошести” корреляционной матрицы. Если этот коэффициент достаточно большой, а соответствующий ему уровень значимости мал (например, меньше 0.05 или
- 01), то это свидетельствует о надежности вычисления корреляционной матрицы. При высоком уровне значимости исследователю стоит задуматься об адекватности использования ФА с полученными данными.
Кроме того, для оценки надежности вычислений элементов корреляционной матрицы и возможности ее описания с помощью ФА во многих статистических программах применяется так называемая мера адекватности вы
борки Кайзера—Мейера—Олкина(КМ О)1. По мнению Г. Кайзера (1974), значения КМО около 0.9 оцениваются как “изумительные”, 0.8 — “достойные похвалы”, 0.7 — “средние”, 0.6 — “посредственные”, 0.5 — “плохие”, а ниже
- 5 — “неприемлемые”. Для оценки надежности вклада в корреляционную матрицу каждой переменной в отдельности также используют меру выборочной адекватности (например, коэффициент MSA в системе SPSS). Вышеприведенные характеристики Г. Кайзера вполне справедливы и для оценки этих величин тоже. Исследование надежности каждой переменной позволяет исключить из расчетов одну или несколько переменных, и тем самым повысить результативность ФА.
Таблица 3
Данные описательной статистики для 9 переменных
Переменная | Среднее
арифм. |
Ср. кв. откл. |
F_MMPI | 8,89 | 4,69 |
К_ММР1 | 15,36 | 3,54 |
L_MMPI | 4,30 | 2,59 |
ММР1_0 | 31,30 | 9,41 |
ММР1_1 | 15,89 | 4,07 |
ММР1_2 • | 27,38 | 5,08 |
ММР1_3 | 24,88 | 5,47 |
ММР1_4 | 24,78 | 5,03 |
ММР1_5 | 33,97 | 2,99 |
ММР1_6 | 12,41 | 3,95 |
MMPIJ7 | 31,22 | 5,30 |
ММР1_8 | 31,83 | 6,90 |
ММР1_9 | 19,19 | 4,30 |
Количество наблюдений |
= 36 |
1 Имеется в виду адекватность факторной модели данному набору переменных, описываемому корреляционной матрицей.
Работая с различными данными, Г. Кайзер установил, что величина данного коэффициента адекватности повышается при: а) увеличении количества переменных,
б) возрастании числа наблюдений каждой переменной,
в) уменьшении числа общих факторов и г) увеличении абсолютных значений коэффициентов корреляций. По сути дела данный автор выделил те условия, при которых повышается адекватность данных, а следовательно, и информативность ФА.